The Concordance Genus of Knots
نویسنده
چکیده
In knot concordance three genera arise naturally, g(K), g4(K), and gc(K): these are the classical genus, the 4–ball genus, and the concordance genus, defined to be the minimum genus among all knots concordant to K. Clearly 0 ≤ g4(K) ≤ gc(K) ≤ g(K). Casson and Nakanishi gave examples to show that g4(K) need not equal gc(K). We begin by reviewing and extending their results. For knots representing elements inA, the concordance group of algebraically slice knots, the relationships between these genera are less clear. Casson and Gordon’s result that A is nontrivial implies that g4(K) can be nonzero for knots in A. Gilmer proved that g4(K) can be arbitrarily large for knots in A. We will prove that there are knots K in A with g4(K) = 1 and gc(K) arbitrarily large. Finally, we tabulate gc for all knots with 10 or fewer crossings. This requires the development of further obstructions and the description of previously unnoticed concordances.
منابع مشابه
The concordance genus of a knot, II
The concordance genus of a knot K is the minimum three-genus among all knots concordant to K . For prime knots of 10 or fewer crossings there have been three knots for which the concordance genus was unknown. Those three cases are now resolved. Two of the cases are settled using invariants of Levine’s algebraic concordance group. The last example depends on the use of twisted Alexander polynomi...
متن کاملKnot Floer Homology and the Four-ball Genus
We use the knot filtration on the Heegaard Floer complex ĈF to define an integer invariant τ(K) for knots. Like the classical signature, this invariant gives a homomorphism from the knot concordance group to Z. As such, it gives lower bounds for the slice genus (and hence also the unknotting number) of a knot; but unlike the signature, τ gives sharp bounds on the four-ball genera of torus knots...
متن کاملKnot Mutation: 4–genus of Knots and Algebraic Concordance
Kearton observed that mutation can change the concordance class of a knot. A close examination of his example reveals that it is of 4–genus 1 and has a mutant of 4–genus 0. The first goal of this paper is to construct examples to show that for any pair of nonnegative integers m and n there is a knot of 4–genus m with a mutant of 4–genus n. A second result of this paper is a crossing change form...
متن کاملThe Stable Concordance Genus
The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot. The stable concordance genus describes the behavior of the concordance genus under connected sum, and ca...
متن کاملHigher-order Genera of Knots
For certain classes of knots we define geometric invariants called higher-order genera. Each of these invariants is a refinement of the slice genus of a knot. We find lower bounds for the higherorder genera in terms of certain von Neumann ρ-invariants, which we call higher-order signatures. The higher-order genera offer a refinement of the Grope filtration of the knot concordance group.
متن کامل